S e r i e s S N S A . . .
1 2 0 l / m i n , 3 5 0 b a r
2 - 6 5 4 4 / 2 - 6 5 4 3 / 1 - 6 5 4 5 / D 2 Z - 1 6 7 1
I s s u e 0 3 - 0 1
S U B J E C T T O C H A N G E W I T H O U T N O T I C E
C o n t r o l l e d m o v e m e n t o f n e g a t i v e l o a d s
C o n t r o l s t h e o i l l e a v i n g t h e a c t u a t o r ( c o u n t e r b a l a n c e f u n c t i o n )
D - 3 8
S t a c k - m o u n t i n g C o u n t e r b a l a n c e V a l v e
L o a d h o l d i n g v i a l e a k - f r e e p o p p e t v a l v e
1
P i l o t A s s i s t e d , P o p p e t D e s i g n
S e c o n d a r y r e l i e f p r o t e c t i o n f o r t h e a c t u a t o r
I n t e r f a c e t o I S O 4 4 0 1 / C E T O P R 3 5 H , s i z e 5 / N F P A D 0 5 / D I N 2 4 3 4 0 A 1 0
D i r e c t i o n a l v a l v e s i d e
5 0
1 , 3
2 7
9 5
3 1
5 4
I S O 4 4 0 1 s i z e 5 i n t e r f a c e
4 6
L o c k n u t
1 4 . 3 A / F ( 9 / 1 6 " )
S N S A - A - 1 0 - S N 1 - 0 3 - 1
m a x . 1 2 6 , 5 ( S N S A - B - 1 0 . . . )
N a m e p l a t e
3 1 , 5
m a x . 1 2 6 , 5 ( S N S A - A - 1 0 . . . )
m a x .
D I M E N S I O N S
T i g h t e n i n g t o r q u e
M a = 2 8 . . . 3 2 [ N m ]
ø 1 5 , 8
2 8 . 6 A / F ( 1 1 / 8 " )
4 A / F ( 5 / 3 2 " )
1 2
7 0
ø 6 , 5
3 2 , 7
S N S A - A - 1 0
S N S A - B - 1 0
1 0
4 3
5 4
4 6 1 2
7 0
ø 6 , 5
7 0
3 3 , 4
m a x . 4 2
1 4 0
A c t u a t o r s i d e
3 1 , 5
m a x .
9 5
3 2 , 7
m a x . 4 2
1 7 , 5
S N S A - A / - B
S N S A - A B
s k t . h d . s c r e w
f o r p r e s s u r e
a d j u s t m e n t
I S O 4 4 0 1 s i z e 5 i n t e r f a c e
P AB
T
S N S A - A - 1 0 . . .
1
2
3
P AB
T
S N S A - B - 1 0 . . .
P AB
T
S N S A - A B - 1 0 . . .
S Y M B O L S
D i r e c t i o n a l
v a l v e s i d e
D E S C R I P T I O N
C o u n t e r b a l a n c e v a l v e s p r e v e n t a c t u a t o r " r u n a w a y " i n t h e
e v e n t o f n e g a t i v e l o a d s .
T h e f l o w l e a v i n g t h e a c t u a t o r ( t h e A l i n e i n t h e e x a m p l e ) i s
p i l o t e d a n d c o n t r o l l e d b y t h e f l o w e n t e r i n g t h e a c t u a t o r ( t h e
B l i n e ) , e n s u r i n g a c a v i t a t i o n - f r e e l o w e r i n g o f t h e l o a d , a s
l o n g a s t h e v a l v e p r e s s u r e s e t t i n g i s n o t e x c e e d e d ( s e e
a p p l i c a t i o n e x a m p l e , p a g e 2 ) .
A c o u n t e r b a l a n c e v a l v e m u s t b e c a p a b l e o f h o l d i n g t h e l o a d
w i t h o u t l e a k a g e . T h e d e s i g n o f t h i s v a l v e i s b a s e d o n a p i l o t
a s s i s t e d p r e s s u r e r e l i e f v a l v e :
S e e P R E S S U R E S E T T I N G S , p a g e 2
T h e p r e s s u r e i n t h e a c t u a t o r i n l e t l i n e c a u s e s t h e r e l i e f
v a l v e i n t h e a c t u a t o r o u t l e t l i n e t o o p e n . T h e l e v e l o f p i l o t
p r e s s u r e w h i c h i s r e q u i r e d i s d e t e r m i n e d b y t h e v a l v e ' s p i l o t
a r e a r a t i o a n d b y t h e p r e s s u r e g e n e r a t e d b y t h e l o a d i t s e l f s :
S e e P R E S S U R E S E T T I N G S , p a g e 2
T o e n s u r e a r e l i a b l e s e c o n d a r y r e l i e f f u n c t i o n ( e . g . f o r t h e r -
m a l e x p a n s i o n ) t h e r e l a t e d d i r e c t i o n a l v a l v e m u s t h a v e a
c e n t r e c o n d i t i o n i n w h i c h p o r t s A a n d B a r e c o n n e c t e d t o
T a n k ( e . g . H T F s p o o l t y p e G ) .
m a x . 2 2 4 ( S N S A - A B - 1 0 . . . )
1/4
Issure: 09.2015
S U B J E C T T O C H A N G E W I T H O U T N O T I C E
2
D - 3 8
A p p l i c a t i o n e x a m p l e
P ABT
L o a d
P R E S S U R E S E T T I N G S
L O A D P R E S S U R E : t o h o l d t h e m a x i m u m l o a d w i t h o u t l e a k a g e , w e r e c o m m e n d
t h a t t h e S N S A . . - 1 0 i s s e t a s f o l l o w s :
p = v a l v e p r e s s u r e s e t t i n g
E
p = m a x i m u m l o a d - i n d u c e d p r e s s u r e
L
E x a m p l e : L o a d p r e s s u r e p
L
= m a x . 2 0 0 [ b a r ]
p r e s s u r e s e t t i n g p
E
= 2 0 0 [ b a r ] 1 , 3 =
2 6 0 [ b a r ]
P I L O T P R E S S U R E : t h e r e q u i r e d p i l o t p r e s s u r e i s c a l c u l a t e d a s f o l l o w s :
p
X
=
2 6 0 [ b a r ] - 1 8 0 [ b a r ]
p = p i l o t p r e s s u r e
x
p = v a l v e p r e s s u r e s e t t i n g
E
E x a m p l e :
L o a d p r e s s u r e p
L
= e f f . 1 8 0 [ b a r ]
P r e s s u r e s e t t i n g p
E
= 2 6 0 [ b a r ]
4 , 5
p = e f f e c t i v e l o a d - i n d u c e d p r e s s u r e
L
i = p i l o t r a t i o ( s e e P R I N C I P A L C H A R A C T E R I S T I C S )
P i l o t r a t i o i = 4 . 5
= a p p r o x .
1 8 [ b a r ]
p
X
=
i
p E - p L
p
E
= p
L
.
1 . 3
1
2
3
4
5
6
2
C a r t r i d g e 3 5 0 b a r t y p e C B E G L C N
C a r t r i d g e 1 7 5 b a r t y p e C B E G L D N
S e a l K i t N o . D S - 2 4 0 , c o m p r i s i n g * ) :
I t . D e s c r i p t i o n
1
1
S N S A - B - 1 0
C O M P O N E N T S A N D S E R V I C E P A R T S
7
8
9
1 0
2 * )
O - R i n g N o . 0 2 1
ø 2 3 , 5 2 x 1 , 7 8
2 * ) 1
O - R i n g N o . 0 1 8
ø 1 8 , 7 7 x 1 , 7 8
12 * ) B a c k u p r i n g 0 2 1
1
1 -
-
-
- S t a c k i n g b o d y
1
1
1
1
1
-
1
S N S A - A B - 1 0
S N S A - A - 1 0
5 0 x 7 0 x 9 5
5 0 x 7 0 x 1 4 0
Q t y .
O - R i n g N o . 0 2 0
ø 2 1 , 9 5 x 1 , 7 8
12 * ) 1
12 * ) B a c k u p r i n g 0 2 01
24 * ) B a c k u p r i n g 0 1 82
-1 1
1
N 9 0
N 9 0
N 9 0
* )
= i n c l u d e d i n S e a l K i t N o . D S - 2 4 0
= a v a i l a b l e a s S e r v i c e P a r t
T O O R D E R S E R V I C E P A R T S , S T A T E :
- c o m p l e t e u n i t m o d e l c o d e f r o m t h e n a m p l a t e ,
i n c l u d i n g D e s i g n N u m b e r .
- s p a r e p a r t d e s c r i p t i o n p e r a b o v e l i s t .
- s p a r e p a r t i t e m n u m b e r p e r a b o v e l i s t .
- d a t a s h e e t n u m b e r , i n c l u d i n g i s s u e d a t e
- q u a n t i t y r e q u i r e d
5 * ) 5
O - R i n g N o . 0 1 4
ø 1 2 , 4 2 x 1 , 7 85 N 9 0
S t a c k i n g b o d y
S t a c k i n g b o d y
s h o w i n g t h e r e l e v a n t p o r t s
S C H E M A T I C S E C T I O N
A B
8 8 7 69 , 1 0 , 1 1
5 4 3 2 1
T y p K A - 1 0
T y p K B - 1 0
T y p K C - 1 0
5 0 x 7 0 x 9 5
C l o c k w i s e r o t a t i o n
r e d u c e s t h e p r e s s u r e
s e t t i n g a n d l e a d s t o
l o w e r i n g o f t h e l o a d .
A p p r o x . 3 f u l l t u r n s f o r
w h o l e r a n g e a d j u s t m e n t .
I N S T A L L A T I O N A N D S E V I C I N G
A L L I N S T A L L A T I O N A N D S E R V I C I N G M U S T B E C A R R I E D
O U T W I T H C A R E , A N D B Y Q U A L I F I E D P E R S O N N E L O N L Y
A t i n s t a l l a t i o n , b e s u r e t o m o u n t t h e v a l v e t h e c o r r e c t w a y
u p . D o n o t c o n f u s e t h e f l a t s u r f a c e ( d i r e c t i o n a l v a l v e s i d e )
a n d t h e s u r f a c e w i t h O - r i n g c o u t e r b o r e s ( t h e a c t u a t o r s i d e ) .
W h e n r e n e w i n g s e a l s , t h e n e w s e a l s s h o u l d b e t h o r o u g h l y
o i l e d o r g r e a s e d b e f o r e f i t t i n g t h e m t o t h e v a l v e .
O b s e r v e t h e c o r r e c t t i g h t e n i n g t o r q u e w h e n i n s t a l l i n g t h e
c a r t r i d g e .
2/4
S U B J E C T T O C H A N G E W I T H O U T N O T I C E
3
D - 3 8
P R I N C I P A L C H A R A C T E R I S T I C S
T y p e
D e s i g n
M o u n t i n g m e t h o d
S i z e
M a s s
M o u n t i n g a t t i t u d e
F l o w d i r e c t i o n
O p e r a t i n g p r e s s u r e
F l u i d s
' s a n d w i c h ' c o u n t e r b a l a n c e v a l v e
s t a c k m o u n t i n g
I S O 4 4 0 1 s i z e 5 i n t e r f a c e
u n r e s t r i c t e d
s e e s y m b o l s
m a x . 3 5 0 [ b a r ]
H y d r a u l i c o i l s H L a n d H L P
t o D I N 5 1 5 2 4
p i l o t a s s i s t e d , p o p p e t t y p e
S N S A - A . . / B . . - 1 0 . . .
S N S A - A B . . - 1 0 . . .
= 2 , 3 0 [ k g ]
= 3 , 5 0 [ k g ]
o t h e r f l u i d s - c o n t a c t H T F
P E R F O R M A N C E C H A R A C T E R I S T I C S ( O i l v i s c o s i t y 3 3 c S t )
C . V . c r a c k i n g p r e s s u r e
a p p r o x . 0 , 3 [ b a r ]
( S t a n d a r d )
Q [ l / m i n ]
,
p [ b a r ]
1 0 2 0 3 0 4 0 5 0 6 0
2 0
1 0
,
p - Q c h a r a c t e r i s t i c s A
ð
A / B
ð
B
3 0
4 0
Q [ l / m i n ]
,
p [ b a r ]
1 0 2 0 3 0 4 0 5 0 6 0
2 0
1 0
3 0
4 0
c a r t r i d g e p i l o t e d o p e n t h r o u g h c h e c k v a l v e
A d j u s t m e n t r a n g e
a p p r o x . 1 , 8 [ b a r ] ( c o n t a c t H T F )
c r a c k i n g
p r e s s u r e
0 , 3 [ b a r ]
( S t a n d a r d )
A d j u s t m e n t r a n g e
p r e s s u r e r a n g e
N 1
= 1 4 0 . . . 3 5 0 [ b a r ]
( p i l o t r a t i o 4 . 5 : 1 )
p r e s s u r e r a n g e
M 1
= 7 0 . . . 1 7 5 [ b a r ]
( p i l o t r a t i o 4 , 5 : 1 )
p r e s s u r e r a n g e
M 2
= 3 0 . . . 1 0 5 [ b a r ]
( p i l o t r a t i o 3 : 1 )
7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0
p r e s s u r e r a n g e
N 2
= 7 0 . . . 2 8 0 [ b a r ]
( p i l o t r a t i o 3 : 1 )
F l u i d t e m p . r a n g e
V i s c o s i t y r a n g e
- 2 0 ° . . . + 6 0 ° [ C ]
1 0 . . . 3 0 0 [ c S t ]
F l o w r a t e , Q m a x .
1 2 0 [ l / m i n ] s e e p e r f o r m . c u r v e s
M i n i m u m f l u i d c l e a n l i n e s s
1 8 / 1 4 t o I S O 4 4 0 6 / C e t o p R P 7 0 H
8 . . . 9 t o N A S 1 6 3 8
,
p - Q c h a r a c t e r i s t i c s A
ð
A / B
ð
B
M O D E L C O D E K E Y
S
A . . . Q
Z . . . R
1 0
( B l a n k ) = N i t r i l e s e a l s (
s t a n d a r d
)
V
s p e c i a l s e a l s b y a r r a n g e m e n t ( c o n t a c t H T F )
=
=
=
=
=
s t a c k m o u n t i n g
S t a n d a r d
m o d e l p e r c u r r e n t d a t a s h e e t
s p e c i a l f e a t u r e s b y a r r a n g e m e n t ( c o n t a c t H T F )
I S O 4 4 0 1 s i z e 5 i n t e r f a c e
V i t o n s e a l s
A - A B - 1 0 _
A = f u n c t i o n i n A
B = f u n c t i o n i n B
A B = f u n c t i o n i n A u n d B
N = c o u n t e r b a l a n c e v a l v e
S = p o p p e t t y p e
E x .
- S -N 1SNS
N 1 =
p r e s s u r e r a n g e 1 4 0 . . . 3 5 0 b a r ( N o r m a l ,
s t a n d a r d
d e s i g n )
S = s c r e w a d j u s t m e n t
0 3 =
c h e c k v a l v e c r a c k i n g p r e s s u r e 0 , 3 b a r (
s t a n d a r d
)
0 3
-
1 8 =
c h e c k v a l v e c r a c k i n g p r e s s u r e 1 . 8 b a r ( c o n t a c t H T F )
p i l o t r a t i o 4 , 5 : 1
N 2 = p r e s s u r e r a n g e 7 0 . . . 2 8 0 b a r ( c o n t a c t H T F )
p i l o t r a t i o 3 : 1
M 1 =
p r e s s u r e r a n g e 7 0 . . . 1 7 5 b a r ( M e d i u m ,
s t a n d a r d
d e s i g n )
p i l o t r a t i o 4 , 5 : 1
M 2 = p r e s s u r e r a n g e 3 0 . . . 1 0 5 b a r ( c o n t a c t H T F )
p i l o t r a t i o 3 : 1
R E L A T E D D A T A S H E E T S
i - 4 1 D I N 2 4 3 4 0 s i z e A 1 0 i n t e r f a c e
V a l v e s a r e s h i p p e d w i t h p r e s s u r e s e t a t t h e m a x i m u m f o r t h e
s p e c i f i e d p r e s s u r e r a n g e e . g . i f N 1 , t h e n 3 5 0 b a r .
3/4
D - 3 8
4/4
S u b j e c t t o c h a n g e w i t h o u t n o t i c e
G e r m a n y
T e l . : + 4 9 7 7 4 2 8 5 2 0
F a x : + 4 9 7 7 4 2 7 1 1 6
i n f o . d e @ b u c h e r h y d r a u l i c s . c o m
G r e a t B r i t a i n
T e l . : + 4 4 2 4 7 6 4 4 3 3 5 0
F a x : + 4 4 2 4 7 6 4 4 3 3 5 1
B U C H E R H Y D R A U L I C S
w w w . b u c h e r h y d r a u l i c s . c o m
F r a n c e
T e l . : + 3 3 3 8 9 6 4 2 2 4 4
F a x : + 3 3 3 8 9 6 5 2 8 7 8
i n f o . f r @ b u c h e r h y d r a u l i c s . c o m
U S A
T e l . : + 1 2 6 2 6 0 5 8 2 8 0
F a x : + 1 2 6 2 6 0 5 8 2 7 8
i n f o . w i @ b u c h e r h y d r a u l i c s . c o m
S w i t z e r l a n d
T e l . : + 4 1 3 3 6 7 2 6 1 1 1
F a x : + 4 1 3 3 6 7 2 6 1 0 3
i n f o . c h @ b u c h e r h y d r a u l i c s . c o m
N e t h e r l a n d
T e l . : + 3 1 7 9 3 4 2 6 2 4 4
F a x : + 3 1 7 9 3 4 2 6 2 8 8
C h i n a
T e l . : + 8 6 1 0 6 8 3 1 4 1 0 8
F a x : + 8 6 1 0 6 8 3 1 4 1 2 1
i n f o b j @ b u c h e r h y d r a u l i c s . c o m
I t a l y
T e l . : + 3 9 0 5 2 2 9 2 8 4 1 1
F a x : + 3 9 0 5 2 2 5 1 3 2 1 1
i n f o . i t @ b u c h e r h y d r a u l i c s . c o m
P r o d u c t C e n t e r E l e v a t o r
T e l . : + 4 1 4 1 7 5 7 0 3 3 3
F a x : + 4 1 4 1 7 5 7 0 5 0 0
i n f o . n h @ b u c h e r h y d r a u l i c s . c o m
A u s t r i a
T e l . : + 4 3 6 2 1 6 4 4 9 7
F a x : + 4 3 6 2 1 6 4 4 9 7 4
info.ch@bucherhydraulics.com www.bucherhydraulics.com
© 2015 by Bucher Hydraulics AG Frutigen, CH-3714 Frutigen
All rights reserved.
Data is provided for the purpose of product description only, and must not be construed as warranted characteristics in the legal sense. The
information does not relieve users from the duty of conducting their own evaluations and tests. Because the products are subject to continual
improvement, we reserve the right to amend the product specifications contained in this catalogue.
4/4
Issure: 09.2015